Antidissipative Numerical Schemes for the Anisotropic Diffusion Operator in Problems for the Allen-cahn Equation
نویسنده
چکیده
This contribution discusses two attitudes to artificial dissipation reduction in numerical schemes for solving initial boundary value problems for the Allen-Cahn equation with anisotropy incorporated into the diffusion operator. In the first case, a weighted first order finite difference scheme is used for spatial discretization of the anisotropic texture diffusion problem in 2D, designed for vector field visualization. In the second case, a higher order finite volume scheme is used for the texture diffusion problem in 3D, applied in a MR tractography algorithm. The anisotropy of the diffusion is controlled by the diffusion tensor field. For both problems, comparisons with standard low order schemes are given in the form of pictures, together with remarks on convergence analysis results.
منابع مشابه
A Numerical Method for the Modified Vector-valued Allen–cahn Phase-field Model and Its Application to Multiphase Image Segmentation
In this paper, we present an efficient numerical method for multiphase image segmentation using a multiphase-field model. The method combines the vector-valued Allen– Cahn phase-field equation with initial data fitting terms containing prescribed interface width and fidelity constants. An efficient numerical solution is achieved using the recently developed hybrid operator splitting method for ...
متن کاملThe existence of global attractor for a Cahn-Hilliard/Allen-Cahn equation
In this paper, we consider a Cahn-Hillard/Allen-Cahn equation. By using the semigroup and the classical existence theorem of global attractors, we give the existence of the global attractor in H^k(0
متن کاملPrimal-dual active set methods for Allen-Cahn variational inequalities
This thesis aims to introduce and analyse a primal-dual active set strategy for solving Allen-Cahn variational inequalities. We consider the standard Allen-Cahn equation with non-local constraints and a vector-valued Allen-Cahn equation with and without non-local constraints. Existence and uniqueness results are derived in a formulation involving Lagrange multipliers for local and non-local con...
متن کاملPositivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملA hybrid FEM for solving the Allen-Cahn equation
Keywords: Allen–Cahn equation Finite element method Operator splitting method Unconditionally stable scheme a b s t r a c t We present an unconditionally stable hybrid finite element method for solving the Allen– Cahn equation, which describes the temporal evolution of a non-conserved phase-field during the antiphase domain coarsening in a binary mixture. Its various modified forms have been ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009